306,983 views
22 votes
22 votes
Please help me with this - Implicit Differentiation (Second Derivative)

Please help me with this - Implicit Differentiation (Second Derivative)-example-1
User Kartoch
by
3.2k points

1 Answer

12 votes
12 votes

Step-by-step explanation

Differentiating both sides of the equation with respect to x:


(d)/(dx)\left(-2x^3-y^2+y\right)=(d)/(dx)\left(0\right)
-6x^2-2y(d)/(dx)\left(y\right)+(d)/(dx)\left(y\right)=0

Isolating d(y)/dx:


(d)/(dx)\left(y\right)=(6x^2)/(-2y+1)

Differentiate again both sides of the equation with respect to x:


(d)/(dx)\left((6x^2)/(-2y+1)\right)

Take the constant out:


=6(d)/(dx)\left((x^2)/(-2y+1)\right)

Applying the quotient rule:


=6\cdot ((d)/(dx)\left(x^2\right)\left(-2y+1\right)-(d)/(dx)\left(-2y+1\right)x^2)/(\left(-2y+1\right)^2)
=6\cdot (2x\left(-2y+1\right)-\left(-2(d)/(dx)\left(y\right)\right)x^2)/(\left(-2y+1\right)^2)
=(6\left(2x\left(-2y+1\right)+2x^2(d)/(dx)\left(y\right)\right))/(\left(-2y+1\right)^2)

The expression now is as follows:


(d^2)/(dx^2)\left(y\right)=(6\left(2x\left(-2y+1\right)+2x^2(d)/(dx)\left(y\right)\right))/(\left(-2y+1\right)^2)

Substituting d(y)/dx= 6x^2/(-2y+1):


(d^2)/(dx^2)\left(y\right)=(6\left(2x\left(-2y+1\right)+2x^2(d)/(dx)\left(y\right)\right))/(\left(-2y+1\right)^2)
(d^2)/(dx^2)\left(y\right)=(6\left(2x\left(-2y+1\right)+2x^2\left((6x^2)/(-2y+1)\right)\right))/(\left(-2y+1\right)^2)

Simplifying the expression by removing the parentheses:


=(6\left(2x\left(-2y+1\right)+2x^2(6x^2)/(-2y+1)\right))/(\left(-2y+1\right)^2)
=(6\left(2x\left(-2y+1\right)+(12x^4)/(-2y+1)\right))/(\left(-2y+1\right)^2)

Convert the element to a fraction:


=(2x\left(-2y+1\right)\left(-2y+1\right))/(-2y+1)+(12x^4)/(-2y+1)

Since the denominators are equal, combine the fractions:


=(2x\left(-2y+1\right)\left(-2y+1\right)+12x^4)/(-2y+1)
=(2x\left(-2y+1\right)^2+12x^4)/(-2y+1)
=(2x\left(-2y+1\right)^2+12x^4)/(-2y+1)
=(6\cdot (12x^4+2x\left(-2y+1\right)^2)/(-2y+1))/(\left(-2y+1\right)^2)

Simplifying:


(d^2)/(dx^2)\left(y\right)=(6\left(2x\left(-2y+1\right)^2+12x^4\right))/(\left(-2y+1\right)^3)

The final implicit derivative is as follows:


(d^2)/(dx^2)\left(y\right)=(6\left(2x\left(-2y+1\right)^2+12x^4\right))/(\left(-2y+1\right)^3)

Now, we need to find the implicit derivative at point (-1,2):


(d^(2))/(dx^(2))(y)=(6(2*(-1)(-2*(2)+1)^2+12(-1)^4))/((-2*2+1)^3)
(d^(2))/(dx^(2))(y)=(6(-2(-4+1)^2+12*1))/((-4+1)^3)

Adding numbers:


(d^(2))/(dx^(2))(y)=(6(-2(-3)^2+12))/((-3)^3)

Computing the powers:


(d^(2))/(dx^(2))(y)=(6(-18+12))/(-27)

Adding numbers:


(d^(2))/(dx^(2))(y)=(6(-6))/(-27)

Multiplying numbers:


(d^(2))/(dx^(2))(y)=(-36)/(-27)

Simplifying:


(d^(2))/(dx^(2))(y)=(4)/(3)

The value of the Implicit Derivative at the point (-1,2) is 4/3

User Claudiu Constantin
by
3.2k points