201k views
4 votes
Find the value of cosAcos2Acos3A...........cos998Acos999A where A=2π/1999

2 Answers

5 votes
Hello,

Here is the demonstration in the book Person Guide to Mathematic by Khattar Dinesh.

Let's assume
P=cos(a)*cos(2a)*cos(3a)*....*cos(998a)*cos(999a)
Q=sin(a)*sin(2a)*sin(3a)*....*sin(998a)*sin(999a)

As sin x *cos x=sin (2x) /2

P*Q=1/2*sin(2a)*1/2sin(4a)*1/2*sin(6a)*....
*1/2* sin(2*998a)*1/2*sin(2*999a) (there are 999 factors)
= 1/(2^999) * sin(2a)*sin(4a)*...
*sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a)
as sin(x)=-sin(2pi-x) and 2pi=1999a

sin(1000a)=-sin(2pi-1000a)=-sin(1999a-1000a)=-sin(999a)
sin(1002a)=-sin(2pi-1002a)=-sin(1999a-1002a)=-sin(997a)
...
sin(1996a)=-sin(2pi-1996a)=-sin(1999a-1996a)=-sin(3a)
sin(1998a)=-sin(2pi-1998a)=-sin(1999a-1998a)=-sin(a)

So sin(2a)*sin(4a)*...
*sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a)
= sin(a)*sin(2a)*sin(3a)*....*sin(998)*sin(999) since there are 500 sign "-".

Thus
P*Q=1/2^999*Q or Q!=0 then
P=1/(2^999)










User Shuvojit
by
8.9k points
0 votes

Answer:

The value of given expression is
(1)/(2^(999)).

Explanation:

The given expression is


\cos A\cos 2A\cos 3A...........\cos 998A\cos 999A

where,
A=(2\pi)/(1999)

Let as assume,


P=\cos A\cos 2A\cos 3A...........\cos 998A\cos 999A


Q=\sin A\sin 2A\sin 3A...........\sin 998A\sin 999A


2^(999)PQ=2^(999)(\cos A\cos 2A.........\cos 999A)
(\sin A\sin 2A........\sin 999A)


2^(999)PQ=(2\cos A\sin A)(2\cos 2A\sin 2A)...........(2\cos 998A\sin 998A)(2\cos 999A\sin 999A)

Using the formula,
2\sin x\cos x=\sin 2x, we get


2^(999)PQ=\sin 2A\sin 4A......\sin 1998A


2^(999)PQ=[\sin 2A\sin 4A......\sin 998A][-\sin(2\pi -1000A)][-\sin(2\pi -1002A)]...[-\sin(2\pi -1998A)] .... (1)

Now,


-\sin(2\pi -1000A)=-\sin(2\pi -1000((2\pi)/(1999)))


-\sin(2\pi -1000A)=-\sin((2\pi\cdot 999)/(1999))


-\sin(2\pi -1000A)=-\sin 999A

So, equation (1) can be written as


2^(999)PQ=[\sin 2A\sin 4A......\sin 998A][\sin 999A\sin 997...\sin A]


2^(999)PQ=\sin A\sin 2A\sin 3A...........\sin 998A\sin 999A


2^(999)PQ=Q

Divide both sides by Q.


2^(999)P=1

Divide both sides by
2^(999)


P=(1)/(2^(999))

Therefore the value of given expression is
(1)/(2^(999)).

User Brian Young
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories