32.8k views
4 votes
Match each product of complex numbers with its value.

Pairs -6, 5 , 7 , -2
complex numbers i^2(2i^2-5) , i^2(3+ i^2) , 2i(2i- i^3) , i(4i^3-i)

User Golobor
by
8.2k points

2 Answers

0 votes

i^2(2i^2-5) \rightarrow 7

i^2(3+i^2) \rightarrow -2

2i(2i-i^3) \rightarrow -6

i(4i^3-i) \rightarrow 5
User Alican Kilicarslan
by
8.0k points
5 votes

Answer:

Distributive property says that:


a \cdot (b+c) =a\cdot b+ a\cdot c

We know that


i^2= -1 where i is the imaginary

Given the complex numbers:

A.


i^2(2i^2-5)


-1(2(-1)-5) = -1(-2-5)= -1(-7) = 7

B.


i^2(3+i^2)


-1(3+(-1)) = -1(3-1)= -1(2) = -2

C.


2i(2i-i^3)

Using distributive property


4i^2-2i^4


4(-1)-2(i^2)^2 = -4-2(-1)^2 = -4 -2 = -6

D.


i(4i^3-i)

Using distributive property


4i^4-i^2


4(i^2)^2-i^2


4(-1)^2-(-1) = 4+1 = 5

Therefore. matching defined as:

A.
i^2(2i^2-5) → 7

B.
i^2(3+i^2) → -2

C.
2i(2i-i^3) → -6

D.
i(4i^3-i) → 5

User Davidnagli
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories