220k views
1 vote
What is the simplified form of the quantity of x plus 8, all over the quantity of 3x plus 7 + the quantity of x plus 7, all over the quantity of x plus 4?

x+8/3x+7 + x+7/x+4
PLEASE help!
I don't understand it at all!

2 Answers

1 vote

Answer:


(4x^2+40x+81)/(3x^2+19x+28)

Explanation:

We have been given an expression
(x+8)/(3x+7)+(x+7)/(x+4). We are asked to find the simplified form of our given expression.

Since the denominators of our given expression is not equal, so we need to make a common denominator to add our given expression as:


((x+8)(x+4))/((3x+7)(x+4))+((x+7)(3x+7))/((x+4)(3x+7))

Using FOIL we will get,


(x*x+4x+8x+8*4)/((3x*x+3x*4+7x+7*4)+(x*3x+7x+7*3x+7*7)/(x*3x+7x+4*3x+7*4)


(x^2+12x+32)/(3x^2+12x+7x+28)+(3x^2+7x+21x+49)/(3x^2+7x+12x+28)


(x^2+12x+32)/(3x^2+19x+28)+(3x^2+28x+49)/(3x^2+19x+28)

Since he denominators are equal, so we can add numerators as:


(x^2+12x+32+3x^2+28x+49)/(3x^2+19x+28)


(4x^2+40x+81)/(3x^2+19x+28)

Therefore, the sum of our given expression would be
(4x^2+40x+81)/(3x^2+19x+28).

User Liebster Kamerad
by
7.5k points
2 votes

(x+8)/(3x+7) + (x+7)/(x+4) \\ = ((x+8)(x+4)+(x+7)(3x+7))/((3x+7)(x+4)) \\ = ( x^(2) +12x+32+3 x^(2) +28x+49)/(3 x^(2) +19x+28) \\ = (4 x^(2) +40x+81)/(3 x^(2) +19x+28)
User David Bern
by
7.8k points