32.3k views
1 vote
If (f + g)(x) = 3x2 + 2x – 1 and g(x) = 2x – 2, what is f(x)?

3x2 + 1
3x2 – 1
3x2 + 4
3x2 – 4
x2 – 2

User CivFan
by
8.1k points

2 Answers

2 votes

Answer:

Option A is correct


f(x)=3x^2+1

Explanation:

Use:


(f+g)(x) = f(x)+g(x)

Given that:


(f+g)(x)=3x^2+2x-1 and g(x) = 2x-2

then;


(f+g)(x) = f(x)+g(x)

Substitute the given values we have;


3x^2+2x-1 = f(x)+2x-2

Subtract 2x-2 from both sides we get;


3x^2+2x-1 -2x+2= f(x)

Combine like terms;


f(x) = 3x^2+1

Therefore, the function f(x) is,
3x^2+1

User Harfangk
by
8.3k points
2 votes
(f + g)(x) = 3x^2 + 2x – 1
g(x) = 2x – 2
f(x) = ? ; 3x^2 + 1

Check by Substituting:
3x^2 + 1 + 2x - 2

Simplify:
3x^2 + 2x - 1
User Yinon
by
8.0k points

No related questions found