Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2015/formulas/mathematics/high-school/2l408t9ucayob5xkw5dsfcngxuati592ud.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2017/formulas/mathematics/high-school/9ehx61og91afh6dw2sn9c4cja5zo84z2d5.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx) = (d)/(dx)[2 \sin x] - (d)/(dx)[\tan x]](https://img.qammunity.org/2017/formulas/mathematics/high-school/ls1rj3hwb0icxllhoh5qc03hx182ein4fh.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle (d)/(dx) = 2(d)/(dx)[\sin x] - (d)/(dx)[\tan x]](https://img.qammunity.org/2017/formulas/mathematics/high-school/8x4pn8ckgk29p9gh0mpxfzf2eix8nh042f.png)
- Trigonometric Differentiation:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation