85.6k views
4 votes
Write the given expression in terms of x and y only tan(sin−1 x + cos−1 y)

User Abhisekp
by
7.9k points

1 Answer

7 votes

Answer:


\tan \left ( \sin ^(-1)x+ \cos ^(-1)y\right )=(xy+√(\left ( 1-x^2 \right )\left ( 1-y^2 \right )))/(y√(1-x^2)-x√(1-y^2))

Explanation:

We need to express
\tan \left ( \sin ^(-1)x+ \cos ^(-1)y\right ) in terms of x and y .

Let
\sin ^(-1)x=\theta \,,\,\cos ^(-1)y=\phi , we get


x=\sin \theta \,,\,y=\cos \phi

Formulae Used:


\sin ^2\theta +\cos ^2\theta =1\\\sin ^2 \phi +\cos ^2 \phi =1


\cos \theta =√(1-\sin^2 \theta)=√(1-x^2)\\\sin \phi=√(1-\cos ^2 \phi)=√(1-y^2)


\tan \theta =(\sin \theta )/(\cos\theta )=(x)/(√(1-x^2))\\\tan \phi =(\sin \phi)/(\cos\phi)=(√(1-y^2))/(y)

We know that
\tan \left ( \theta +\phi\right )=(\tan \theta +\tan \phi )/(1-\tan \theta \,\tan \phi )


\tan \left ( \sin ^(-1)x+ \cos ^(-1)y\right )=((x)/(√(1-x^2))+(√(1-y^2))/(y))/(1-(x√(1-y^2))/(y√(-x^2)))\\\therefore \tan \left ( \sin ^(-1)x+ \cos ^(-1)y\right )=(xy+√(\left ( 1-x^2 \right )\left ( 1-y^2 \right )))/(y√(1-x^2)-x√(1-y^2))

User Katt
by
8.4k points