166k views
5 votes
Find the possible value or values of n in the quadratic equation 2n2 – 7n + 6 = 0. 

A. n = 32, n = 2   B. n = 6, n = 0   C. n = 1, n = 3   D. n = −2, n = −32

2 Answers

5 votes
Factoring in the quadratic equations


$\begin{align} 2n^2-7n+6&=0\\\frac12(2n-4)(2n-3)&=0\\(n-2)(2n-3)&=0\\n&=\boxed{2\ $or$\ \frac32} \end

User Veikko
by
8.0k points
7 votes
I find easier to use quadratic formula, ok? Let's go...

2n² - 7 n + 6 = 0, where the coefficients are: a = 2; b = -7 and c = 6.


n=\frac{-(-7)\pm \sqrt{(-7)^(2)-4.2.6}}{2.2}\rightarrow \\ n=(7\pm 1)/(4)\rightarrow n=(3)/(4)\,\,or\,\,n=2

You if have any question, please, contact me, ok? Thanks!!
User Wasilikoslow
by
8.8k points