166k views
5 votes
Find the possible value or values of n in the quadratic equation 2n2 – 7n + 6 = 0. 

A. n = 32, n = 2   B. n = 6, n = 0   C. n = 1, n = 3   D. n = −2, n = −32

2 Answers

5 votes
Factoring in the quadratic equations


$\begin{align} 2n^2-7n+6&=0\\\frac12(2n-4)(2n-3)&=0\\(n-2)(2n-3)&=0\\n&=\boxed{2\ $or$\ \frac32} \end

User Veikko
by
8.0k points
7 votes
I find easier to use quadratic formula, ok? Let's go...

2n² - 7 n + 6 = 0, where the coefficients are: a = 2; b = -7 and c = 6.


n=\frac{-(-7)\pm \sqrt{(-7)^(2)-4.2.6}}{2.2}\rightarrow \\ n=(7\pm 1)/(4)\rightarrow n=(3)/(4)\,\,or\,\,n=2

You if have any question, please, contact me, ok? Thanks!!
User Wasilikoslow
by
8.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.