256,666 views
11 votes
11 votes
Solve the right triangle. If two sides are given, give angles in degrees and minutes.

Solve the right triangle. If two sides are given, give angles in degrees and minutes-example-1
User Dercni
by
3.0k points

1 Answer

13 votes
13 votes

Concept:

The diagram below represents the question given

The given dimensions from the question are


\begin{gathered} \angle A=10^038^(\prime) \\ c=271ft \end{gathered}

Step 1:

We will convert the angle at A from degree minutes to degree decimal


\begin{gathered} \angle A=10^038^(\prime) \\ \angle A=10^0+(38)/(60) \\ \angle A=10^0+0.63^0 \\ \angle A=10.63^0 \end{gathered}

Step 2: Calculate the value of b

To calculate the value of b, we will use the trigonometric ratio below


\begin{gathered} \cos A=\frac{Adjacent}{\text{hypotenus}} \\ \text{where,} \\ A=10.63^0 \\ \text{Adjacent}=b \\ \text{Hypotenus}=c=271ft \end{gathered}

By substituting the values, we will have


\begin{gathered} \cos A=\frac{Adjacent}{\text{hypotenus}} \\ \cos 10.63^0=(b)/(271) \\ \cos 10.63=(b)/(271) \\ \text{cross multiply, we will have} \\ b=\cos 10.63*271ft \\ b=266.35ft \end{gathered}

Step 3: Calculate the value of c

To calculate the value of c, we will use the trigonometric ratio below


\begin{gathered} \sin A=(opposite)/(Hypotenus) \\ A=10.63^0 \\ \text{opposite}=a \\ \text{Hypotenus}=c=271ft \end{gathered}

By substituting the values, we will have


\begin{gathered} \sin A=(opposite)/(Hypotenus) \\ \sin 10.63^0=(a)/(271) \\ \sin 10.63^0=(a)/(271ft) \\ \text{cross multiply, we will have} \\ a=\sin 10.63^0*271 \\ a=49.99ft \end{gathered}

Hence,

The final answers are

a= 49.99ft

b= 266.35ft

Solve the right triangle. If two sides are given, give angles in degrees and minutes-example-1
User Slimane Amiar
by
2.8k points