66.7k views
1 vote

((15-X)!)/((13-X)!.2!)=(X!)/((X-2)!.2!) \\ \\ \\ \\ X=?

User GijsjanB
by
7.9k points

2 Answers

6 votes

(15-x)!=[15-(x+2)]!*[15-(x+1)]*(15-x)\\\\=(15-x-2)!*(15-x-1)*(15-x)\\\\=(13-x)!*(14-x)*(15-x)\\\\=(13-x)!*(210-14x-15x+x^2)\\\\=(13-x)!*(x^2-29x+210)\\\\therefore:((15-x)!)/((13-x)!\cdot2!)=((13-x)!\cdot(x^2-29x+210))/((13-x)!\cdot2!)=(x^2-29x+210)/(2)



x!=(x-2)!*(x-1)* x=(x-2)!*(x^2-x)\\\\therefore:(x!)/((x-2)!\cdot2!)=((x-2)!\cdot(x^2-x))/((x-2)!\cdot2)=(x^2-x)/(2)\\\\======================================\\\\(x^2-29x+210)/(2)=(x^2-x)/(2)\ \ \ \ \ |multiply\ both\ sides\ by\ 2\\\\x^2-29x+210=x^2-x\\\\x^2-x^2-29x+x=-210\\\\-28x=-210\ \ \ \ \ |divide\ both\ sides\ by\ (-28)\\\\x=7.5\\otin\mathbb{Z}


This\ equation\ has\ not\ solution\ because\ x\ must\ be\ an\ integer!\\\\x\in\O
User Bthota
by
8.5k points
7 votes

((15-x)!)/((13-x)!\cdot2!)=(x!)/((x-2)!\cdot2!)\\ ((14-x)(15-x))/(2)=((x-1)x)/(2)\\ (14-x)(15-x)=(x-1)x\\ 210-14x-15x+x^2=x^2-x\\ 28x=210\\ x=(210)/(28)=7.5

The factorial is defined for natural numbers and since 7.5 isn't one, this equation has no solutions.
User Waverick
by
7.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories