68.6k views
2 votes
Find the first three output values of the fractal-generating function f(z)=z^2-2+2i

2 Answers

3 votes
f ( z ) = z² - 2 + 2 i1 ) z = 0:f ( 0 ) = 0² - 2 + 2 i = - 2 + 2 i2 ) f ( - 2 + 2 i ) = ( - 2 + 2 i )² - 2 + 2 i = = 4 - 8 i + 4 i² - 2 + 2 i = 4 - 8 i - 4 - 2 + 2 i = - 2 - 6 i3 ) f ( - 2 - 6 i ) = ( - 2 - 6 i )² - 2 + 2 i = 4 + 24 i + 36 i² - 2 + 2 i == 4 + 24 i - 36 - 2 + 2 i = - 34 + 26 i.
User MilanPanchal
by
7.4k points
1 vote

we have


f(z)=z^2-2+2i

remember that


i^(2)=-1

Step 1

Find the first output value for
z=0

substitute in the fractal-generating function


f(0)=0^2-2+2i


f(0)=-2+2i

Step 2

Find the second output value for
z=-2+2i

substitute in the fractal-generating function


f(-2+2i)=(-2+2i)^2-2+2i


= 4-8i+4i^2-2+2i


=2-6i+4*(-1)\\= 2-6i-4\\=-2-6i

so


f(-2+2i)=-2-6i

Step 3

Find the third output value for
z=-2-6i

substitute in the fractal-generating function


f(-2-6i)=(-2-6i)^2-2+2i


=4+24i+36i^2-2+2i


= 2+26i+36*(-1)\\= 2+26i-36\\=-34+26i

so


f(-2-6i)=-34+26i

therefore

the answer is

the first three output values of the fractal-generating function are


[-2+2i,-2-6i,-34+26i]


User SlashJ
by
8.0k points