48.4k views
0 votes
Given the equation square root of 2x+1=3 solve for x and identify if it is an extraneous solution

User TrOnNe
by
8.0k points

2 Answers

4 votes

x=4 and I believe it is an extraneous solution, to see if it is extraneous or not

* put x=4 in the original given equation, to see if it satisfies , if not then the solution is not extraneous.

User Oliver Spencer
by
8.0k points
5 votes

Answer:

Given the equation:
√(2x+1) =3 ......[1]

Taking square both sides, we get;


2x+1 = 3^2


2x+1 = 9

Subtract 1 from both sides we get;

2x = 8

Divide both sides by 2 we get;

x = 4

Extraneous solution states that it is a root of a transformed equation that is not a root of the original equation because it was excluded from the domain of the original equation.

Substitute the value of x in [1] we get;


√(2(4)+1) =3


√(8+1)=3


√(9) =3


3 =3 True.

Therefore, the value of x is 4 and it is not an extraneous solution.

User Mark Chesney
by
7.7k points