134k views
1 vote
Integrate e^(sqrt x )

User BaldyHDL
by
7.5k points

1 Answer

3 votes
We will use partial integration:
\int {u} \, dv= u * v - \int {v} \, du First we will substitute:
u=e^( √(x) ) , dv = dx, du = e^( √(x) ) * (1)/(2 √(x) ) dx, v = x...
=x * e^( √(x) ) - \int {xe^( √(x) ) (1)/(2 √(x) ) } \, dx
Another substitution:
t= √(x) . t^(2) =x, dt= (dx)/(2 √(x) )

\int {t^(2)e^(2) } \, dt =t^(2) e^( √(x) ) - \int {te^( √(x) ) } \, dt =t^(2) e ^(t) -2te^(t) +2 e^(t)
Finally: ...=
xe^( √(x) ) -xe^( √(x) )-2 √(x) e^( √(x) ) -2e^( √(x) ) = 2( √(x) -1)*e^( √(x) ) +C
Thank you.



User MarcMush
by
8.0k points