134k views
1 vote
Integrate e^(sqrt x )

User BaldyHDL
by
7.7k points

1 Answer

3 votes
We will use partial integration:
\int {u} \, dv= u * v - \int {v} \, du First we will substitute:
u=e^( √(x) ) , dv = dx, du = e^( √(x) ) * (1)/(2 √(x) ) dx, v = x...
=x * e^( √(x) ) - \int {xe^( √(x) ) (1)/(2 √(x) ) } \, dx
Another substitution:
t= √(x) . t^(2) =x, dt= (dx)/(2 √(x) )

\int {t^(2)e^(2) } \, dt =t^(2) e^( √(x) ) - \int {te^( √(x) ) } \, dt =t^(2) e ^(t) -2te^(t) +2 e^(t)
Finally: ...=
xe^( √(x) ) -xe^( √(x) )-2 √(x) e^( √(x) ) -2e^( √(x) ) = 2( √(x) -1)*e^( √(x) ) +C
Thank you.



User MarcMush
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories