56.7k views
3 votes
Lim x-> pi/4 of (1-tanx)/(sinx-cosx)

User Atomicules
by
8.2k points

1 Answer

3 votes

\lim_(x \to \ \pi /4) (1-tan x)/(sin x - cos x)If we use: x=π/4 we will get:
(1-1)/( √(2) /2- √(2)/2 ) = (0)/(0) and thet is not defined limit. So we will transform the expression:
(1- tan x)/(sin x - cos x)= (1- (sin x)/(cos x) )/(sin x - cos x)= ( (cos x - sin x)/(cos x) )/(sin x - cos x)= (-(sin x - cos x ))/(cos x( sin x - cos x) )= (-1)/(cos x)= (-1)/(cos ( \pi )/(4) )Finally:
(-1)/( ( √(2) )/(2) ) = (-2)/( √(2) ) =- √(2) And that´s it. Don´t forget to put "lim" in every line, except when you substitute variable x with π/4. Thank you.
User Mr Guliarte
by
8.7k points