246,793 views
28 votes
28 votes
Find the value of the variable. If you’re answer is not an intervene leave it in simplest radical form.

Find the value of the variable. If you’re answer is not an intervene leave it in simplest-example-1
User Deepali Mittal
by
3.0k points

1 Answer

22 votes
22 votes

Find the value of x and y in the right angled triangle;


\begin{gathered} \text{Opposite}=y\text{ (facing the reference angle)} \\ \text{Adjacent}=x\text{ (lies between the reference angle and the right angle)} \\ \text{Hypotenuse}=16\sqrt[]{3}\text{ (facing the right angle)} \end{gathered}

To calculate x, we shall use the trig ratio;


\begin{gathered} \cos \theta=(adj)/(hyp) \\ \cos 30=\frac{x}{16\sqrt[]{3}} \\ \text{Note that cos 30 is also equal to }\frac{\sqrt[]{3}}{2}.\text{ Therefore} \\ \frac{\sqrt[]{3}}{2}=\frac{x}{16\sqrt[]{3}} \\ \text{Cross multiply and you'll have} \\ \frac{16\sqrt[]{3}*\sqrt[]{3}}{2}=x \\ (16*3)/(2)=x \\ x=24 \end{gathered}

To valculate y, we shall use the trig ratio;


\begin{gathered} \sin \theta=(opp)/(hyp) \\ \sin 30=\frac{y}{16\sqrt[]{3}} \\ Note\text{ that sin 30 is also equal to }(1)/(2).\text{ Therefore} \\ (1)/(2)=\frac{y}{16\sqrt[]{3}} \\ \text{Cross multiply and you'll have} \\ \frac{16\sqrt[]{3}}{2}=y \\ y=8\sqrt[]{3} \end{gathered}

The first option is the correct answer

x = 24, y = 8 square root 3

User Syska
by
3.1k points