167k views
3 votes
X+4y-5z=-7,3x+2y+3z=7,2x+y+5z=8

User Burntblark
by
8.6k points

1 Answer

5 votes
count "x" from first equation:
x+4y-5z=-7
x=5z-4y-7
count "x" from second equation:

3x+2y+3z=7 \\ 3x=7-2y-3z \qquad /:3 \\ x=(7-2y-3z)/(3)
so:

5z-4y-7=(7-2y-3z)/(3) \qquad /\cdot 3 \\ 15z-12y-21=7-2y-3z \\ 18z-10y=28 \qquad /:2 \\ 9z-5y=14 \\ 9z=14+5y \qquad /:9 \\ z=(14+5y)/(9)
Now substitute this value of "z" to "x=5z-4y-7":

x=5 \cdot (14+5y)/(9) -4y-7=(70+25y)/(9)-(36y)/(9)-(63)/(9)=(7-11y)/(9)
Substitute values "x" and "z" to third equation and evaluate "y":

2x+y+5z=8 \\ 2 \cdot (7-11y)/(9) +y+5 \cdot (14+5y)/(9)=8 \qquad /\cdot 9 \\ 2(7-11y)+9y+5(14+5y)=72 \\ 14-22y+9y+70+25y=72 \\ 12y+84=72 \\ 12y=-12 \qquad /:12 \\ y=-1 \\ \hbox{So:} \\ x=(7+11)/(9)=(18)/(9)=2 \\ z=(14-5)/(9)=(9)/(9)=1
Solution is:

\begin{cases} x=2 \\ y=-1 \\ z=1 \end{cases}
User Kore
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories