198k views
1 vote
Find f.

A) 7.4

B) 8.2

C) 10.5

D) 11.1

Find f. A) 7.4 B) 8.2 C) 10.5 D) 11.1-example-1
User Ajean
by
8.0k points

1 Answer

5 votes
F=72

g=6

------------


\cos { \left( F \right) } =\frac { { e }^( 2 )+{ g }^( 2 )-{ f }^( 2 ) }{ 2eg }

Therefore:


\cos { \left( 72 \right) } =\frac { { e }^( 2 )+{ 6 }^( 2 )-{ f }^( 2 ) }{ 2\cdot e\cdot 6 } \\ \\ \cos { \left( 72 \right) } =\frac { { e }^( 2 )+36-{ f }^( 2 ) }{ 12e }


\\ \\ 12e\cdot \cos { \left( 72 \right) } ={ e }^( 2 )+36-{ f }^( 2 )\\ \\ \therefore \quad { f }^( 2 )={ e }^( 2 )-12e\cdot \cos { \left( 72 \right) } +36\\ \\ \therefore \quad f=\sqrt { { e }^( 2 )-12e\cdot \cos { \left( 72 \right) +36 } } \\ \\ \therefore \quad f=\sqrt { e\left( e-12\cos { \left( 72 \right) } \right) +36 }

But what is e?

E=76

G=32

g=6

And:


\frac { e }{ \sin { \left( E \right) } } =\frac { g }{ \sin { \left( G \right) } }

Which means that:


\frac { e }{ \sin { \left( 76 \right) } } =\frac { 6 }{ \sin { \left( 32 \right) } } \\ \\ \therefore \quad e=\frac { 6\cdot \sin { \left( 76 \right) } }{ \sin { \left( 32 \right) } }

If you take this value into account, you will discover that f is...


f=\sqrt { \frac { 6\cdot \sin { \left( 76 \right) } }{ \sin { \left( 32 \right) } } \left( \frac { 6\cdot \sin { \left( 76 \right) } }{ \sin { \left( 32 \right) } } -12\cos { \left( 72 \right) } \right) +36 } \\ \\ \therefore \quad f=10.8\quad \left( 1\quad d.p \right)

So I would have to say that the answer is approximately (c).
User AnupamChugh
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.