59.2k views
0 votes
Solve the system of equations; x - 2y = 2 and 3x - 5y = 9 by writing and solving a matrix equation. Show all your work.

1 Answer

3 votes
y=
(28)/(11)
x=
(3)/(11)

Working;
Start by forming a matrix as shown below;

\left[\begin{array}{ccc}1&-2\\3&5\end{array}\right] ( \left[\begin{array}{ccc}x\\y\end{array}\right])= ( \left[\begin{array}{ccc}2\\9\end{array}\right])

Step II
Finding the inverse of the matrix as shown below;
Determinant;
(1*5)-(3*(-2)=11
Inverse;

(1)/(11) \left[\begin{array}{ccc}5&2\\-3&1\end{array}\right] \left[\begin{array}{ccc}1&-2\\3&5\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right]= (1)/(11) \left[\begin{array}{ccc}5&2\\-3&1\end{array}\right] \left[\begin{array}{ccc}2\\9\end{array}\right]

Evaluating further;

(1)/(11) \left[\begin{array}{ccc}11&0\\0&11\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = (1)/(11) \left[\begin{array}{ccc}28\\3\end{array}\right]

x=
(28)/(11) and y = (3)/(11)
User Tony Xu
by
8.5k points