47.6k views
22 votes
Compute $\sqrt{64} + \sqrt{225} - \sqrt{64 + 225}$.

User Skofgar
by
4.8k points

2 Answers

14 votes

Answer:

6

Explanation:

User Baltasarq
by
4.8k points
5 votes

Answer:

6

Explanation:

Simplify the following:

sqrt(64) + sqrt(225) - sqrt(64 + 225)

Hint: | Evaluate 64 + 225.

64 + 225 = 289:

sqrt(64) + sqrt(225) - sqrt(289)

Hint: | Simplify radicals.

sqrt(289) = sqrt(17^2) = 17:

sqrt(64) + sqrt(225) - 17

Hint: | Simplify radicals.

sqrt(64) = sqrt(2^6) = 2^3:

2^3 + sqrt(225) - 17

Hint: | In order to evaluate 2^3 express 2^3 as 2×2^2.

2^3 = 2×2^2:

2×2^2 + sqrt(225) - 17

Hint: | Evaluate 2^2.

2^2 = 4:

2×4 + sqrt(225) - 17

Hint: | Multiply 2 and 4 together.

2×4 = 8:

8 + sqrt(225) - 17

Hint: | Simplify radicals.

sqrt(225) = sqrt(15^2) = 15:

8 + 15 - 17

Hint: | Evaluate 8 + 15 - 17.

8 + 15 - 17 = 6:

Answer: 6

User Usher
by
5.0k points