Given :
f=15
e=14
F=33 degrees
Solution:
Using Sine laws,
a/sin A = b/sin B = c/sin C
Here, a,b,c is the sides
The values are taken,
Let's take the case,
e/sin E = f/sin F = g/ sin G
f/sin F = e/sin E
a) Angle E is obtained,
15/sin 33° =14/sin E
27.5 =14/sin E
sin E= 14/27.50
sin E=0.508
E= sin⁻¹(0.508)
∠E=30.6°
b) Sum of angles in a triangle is 180 degrees. Thus, calculating angle G,
∠G = 180°-(30.6°+33°)
∠G = 180°-(63.6°)
∠G = 116.4°
c) The side g is found out,
g/sinG =f/sinF
g/sin 116.4°=15/sin 33°
g/sin 116.4°=15/0.544
g/116.4° = 27.50
g= 27.50 sin 116.4°
g=24.6