152k views
2 votes
Solve h = −16t2 + 36t + 4.

1 Answer

7 votes
I can do each of the things I asked above.
So, let's change this into vertex form:

h=-16t^2+36t+4

h=(-16t^2+36t)+4

h=-16(t^2-2.25t)+4

h=-16(t^2-2.25t+1.27-1.27)+4

h=-16(t^2-2.25t+1.27)+20.32+4

h=-16(t-1.125)^2+24.32
The vertex is at (1.125,24.32)
Answers may vary due to rounding

Factored Form:

h = -16t^2 + 36t + 4

h = -4\left(4t^2-9t-1\right)

Quadratic Formula:

x = (-b +/- √(b^2-4(a)(c)))/(2a)
h = -16t^2 + 36t + 4
a = -16 b = 36 c = 4

h = (-(36) +/- √((36)^2-4(-16)(4)))/(2(-16))

h = (-36 +/- √(1552))/(-32)

h = ≈-0.11

h = ≈2.36

User Egalitarian
by
8.0k points