222k views
0 votes
Ap calculus, please help me, i dont understand

Ap calculus, please help me, i dont understand-example-1
User Noam Manos
by
7.3k points

1 Answer

2 votes

Answer:


\displaystyle y = Ce^\bigg{(x^2)/(2)} - 1

General Formulas and Concepts:

Pre-Algebra

  • Equality Properties

Algebra I

  • Functions
  • Function Notation
  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)

Algebra II

  • Natural Logarithms ln and Euler's number e

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Solving differentials
  • Separation of Variables

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

U-Substitution

Logarithmic Integration:
\displaystyle \int {(1)/(x)} \, dx = ln|x| + C

Explanation:

Step 1: Define


\displaystyle y' = x(1 + y)

Step 2: Redefine

Separation of Variables. Get differential equation to a form where we can integrate both sides.

  1. [Division Property of Equality] Isolate x:
    \displaystyle (1)/(1 + y)y' = x
  2. Rewrite derivative notation:
    \displaystyle (1)/(1 + y) \ (dy)/(dx) = x
  3. Rewrite:
    \displaystyle (1)/(1 + y) \ dy = x \ dx

Step 3: Find General Solution Pt. 1

  1. [Equality Property] Integrate both sides:
    \displaystyle \int {(1)/(1 + y)} \, dy = \int {x} \, dx
  2. [Right Integral] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle \int {(1)/(1 + y)} \, dy = (x^2)/(2) + C

Step 4: Find General Solution Pt. 2

Identify variables for u-substitution.

  1. Set:
    \displaystyle u = 1 + y
  2. Differentiate [Basic Power Rule]:
    \displaystyle du = dy

Step 5: Find General Solution Pt. 3

  1. [Integral] U-Substitution:
    \displaystyle \int {(1)/(u)} \, du = (x^2)/(2) + C
  2. [Integral] Integrate [Logarithmic Integration]:
    \displaystyle ln|u| = (x^2)/(2) + C
  3. Back-Substitute:
    \displaystyle ln|1 + y| = (x^2)/(2) + C
  4. [Equality Property] e both sides:
    \displaystyle e^\bigg1 + y = e^\bigg{(x^2)/(2) + C}
  5. Simplify:
    \displaystyle |1 + y| = e^\bigg{(x^2)/(2) + C}
  6. Rewrite:
    \displaystyle |1 + y| = Ce^\bigg{(x^2)/(2)}
  7. Rewrite:
    \displaystyle 1 + y = \pm Ce^\bigg{(x^2)/(2)}
  8. [Subtraction Property of Equality] Isolate y:
    \displaystyle y = \pm Ce^\bigg{(x^2)/(2)} - 1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Slope Fields

Book: College Calculus 10e

User Mattravel
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories