222k views
0 votes
Ap calculus, please help me, i dont understand

Ap calculus, please help me, i dont understand-example-1
User Noam Manos
by
7.3k points

1 Answer

2 votes

Answer:


\displaystyle y = Ce^\bigg{(x^2)/(2)} - 1

General Formulas and Concepts:

Pre-Algebra

  • Equality Properties

Algebra I

  • Functions
  • Function Notation
  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)

Algebra II

  • Natural Logarithms ln and Euler's number e

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Solving differentials
  • Separation of Variables

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

U-Substitution

Logarithmic Integration:
\displaystyle \int {(1)/(x)} \, dx = ln|x| + C

Explanation:

Step 1: Define


\displaystyle y' = x(1 + y)

Step 2: Redefine

Separation of Variables. Get differential equation to a form where we can integrate both sides.

  1. [Division Property of Equality] Isolate x:
    \displaystyle (1)/(1 + y)y' = x
  2. Rewrite derivative notation:
    \displaystyle (1)/(1 + y) \ (dy)/(dx) = x
  3. Rewrite:
    \displaystyle (1)/(1 + y) \ dy = x \ dx

Step 3: Find General Solution Pt. 1

  1. [Equality Property] Integrate both sides:
    \displaystyle \int {(1)/(1 + y)} \, dy = \int {x} \, dx
  2. [Right Integral] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle \int {(1)/(1 + y)} \, dy = (x^2)/(2) + C

Step 4: Find General Solution Pt. 2

Identify variables for u-substitution.

  1. Set:
    \displaystyle u = 1 + y
  2. Differentiate [Basic Power Rule]:
    \displaystyle du = dy

Step 5: Find General Solution Pt. 3

  1. [Integral] U-Substitution:
    \displaystyle \int {(1)/(u)} \, du = (x^2)/(2) + C
  2. [Integral] Integrate [Logarithmic Integration]:
    \displaystyle ln|u| = (x^2)/(2) + C
  3. Back-Substitute:
    \displaystyle ln|1 + y| = (x^2)/(2) + C
  4. [Equality Property] e both sides:
    \displaystyle e^\bigg1 + y = e^\bigg{(x^2)/(2) + C}
  5. Simplify:
    \displaystyle |1 + y| = e^\bigg{(x^2)/(2) + C}
  6. Rewrite:
    \displaystyle |1 + y| = Ce^\bigg{(x^2)/(2)}
  7. Rewrite:
    \displaystyle 1 + y = \pm Ce^\bigg{(x^2)/(2)}
  8. [Subtraction Property of Equality] Isolate y:
    \displaystyle y = \pm Ce^\bigg{(x^2)/(2)} - 1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Slope Fields

Book: College Calculus 10e

User Mattravel
by
7.7k points