216k views
1 vote
Write the expression as the sine, cosine, or tangent of an angle.

sin 57° cos 13° - cos 57° sin 13°
Select one:
a. cos 70°
b. cos 44°
c. sin 44°
d. sin 70°

User Explicat
by
7.5k points

2 Answers

6 votes
Use this formula: sin (x-y) = sinx cosy - cosx siny

sin57 cos13 - cos57 sin13 = sin (57 -13) = sin (44)


User Vernonk
by
7.7k points
6 votes

Answer: The correct option is (c) sin 44°.

Step-by-step explanation: We are given to write the following expression as the sine, cosine or tangent of an angle :


T=\sin 57^\circ\cos13^\circ-\cos57^\circ\sin13^\circ.

We will be using the following trigonometric formula :


\sin (A+B)=\sin A\cos B-\cos A\sin B.

Therefore, we get


T\\\\=\sin 57^\circ\cos13^\circ-\cos57^\circ\sin13^\circ\\\\=\sin(57^\circ-13^\circ)\\\\=\sin 44^\circ.

Thus, the required expression can be written in sine of an angle of measure 44°.

Option (c) is CORRECT.

User Lamak
by
7.9k points