211,807 views
39 votes
39 votes
InAABC,a = 13, and bFind c to the nearesttenth.AmZA = 19°,b= 14.Baс

InAABC,a = 13, and bFind c to the nearesttenth.AmZA = 19°,b= 14.Baс-example-1
User Kiahni
by
2.5k points

1 Answer

16 votes
16 votes

Given:


m\angle A=19\degree,a=13\text{ and b=14.}

Required:

We need to find the value of c.

Step-by-step explanation:

Consider the sine law.


(sinA)/(a)=(sinB)/(b)
Substitute\text{ }m\angle A=19\degree,a=13\text{ and b=14 in the formula,}
(sin19\degree)/(13)=(sinB)/(14)
(sin19\degree)/(13)*14=(sinB)/(14)*14
(sin19\degree)/(13)*14=sinB
sinB=(sin19\degree)/(13)*14
sin^(-1)sinB=sin^(-1)((sin19\degree)/(13)*14)
B=sin^(-1)((sin19\degree)/(13)*14)
m\angle B=20.5\degree

Use the triangle sum properly.


m\angle A+m\angle B+m\angle C=180\degree
Substitute\text{ }m\angle A=19\degree,and\text{ }m\angle B=20.5\text{ in the formula.}
19\degree+20.5\degree+m\angle C=180\degree
39.5\degree+m\angle C=180\degree
39.5\degree+m\angle C-39.5\degree=180\degree-39.5\degree
m\angle C=140.5\degree

Consider the sine law.


(sinA)/(a)=(sinC)/(c)
Substitute\text{ }m\angle A=19\degree,a=13\text{ and }m\angle C=140.5\text{ in the formula,}
(sin19\degree)/(13)=(sin140.5\degree)/(c)
(13)/(sin19\degree)=(c)/(sin140.5\degree)
(13)/(sin19\degree)* sin140.5\degree=(c)/(sin140.5\degree)* sin140.5\degree
(13)/(sin19\degree)* sin140.5\degree=c
c=25.3987
c=25.4

Final answer:


c=25.4units

User Kable
by
3.0k points