Answer:
![(dy)/(dx)=2ax+b](https://img.qammunity.org/2022/formulas/physics/college/becztqoggcifgthdad6rkdgqb64mihnacn.png)
Step-by-step explanation:
We are given that
![y(x)=ax^2+bx](https://img.qammunity.org/2022/formulas/physics/college/5ew8pfm22dvvssylswti2e69odqqkr65vt.png)
![a=-8.0* 10^(-3)m^(-1)](https://img.qammunity.org/2022/formulas/physics/college/yr3rmvdixxybclwcmdyxquxxs4k2gclnib.png)
![b=1.0](https://img.qammunity.org/2022/formulas/physics/college/p22f2b9890nhaxturuvxs1ifb5hgdq5505.png)
x=Horizontal position along the trajectory
y=Vertical position along the trajectory
We have to find the derivative of the vertical position of the pumpkin trajectory with respect to its horizontal position.
Differentiate the equation w.r.t x
![(dy)/(dx)=2ax+b](https://img.qammunity.org/2022/formulas/physics/college/becztqoggcifgthdad6rkdgqb64mihnacn.png)
Hence, the derivative of the vertical position of the pumpkin trajectory with respect to its horizontal position is given by
![(dy)/(dx)=2ax+b](https://img.qammunity.org/2022/formulas/physics/college/becztqoggcifgthdad6rkdgqb64mihnacn.png)