37.5k views
2 votes
Giving 40 points

Solve each system by substitution

Giving 40 points Solve each system by substitution-example-1
User Joakimbl
by
7.7k points

1 Answer

7 votes

Explanation:


\underline{ \underline{ \text{Given}}} :

  • -4x - y = 19 -------- Equation ( i )
  • x - 2y = -7 ----------- Equation ( ii )


\underline{ \underline{ \text{To \: find}}} :

  • Value of x & y


\underline {\underline{ \text{ Solution}}} :

From equation ( i ) :

-4x - y = 19

-y = 19 + 4x

-y = - ( -19 - 4x )

y = -4x - 19 ------ Equation ( iii )

Substituting the value of y from equation ( iii ) in equation ( ii ) , we get :


\tt{x - 2y = - 7 }


\tt{x - 2( - 4x - 19) = - 7}


\tt{x + 8x + 38 = - 7}


\tt{9x = - 7 - 38}


\tt{9x = - 45}


\tt{x = ( - 45)/(9)}


\boxed{ \tt{x = - 5}}

Substituting the value of x in equation ( i ) , we get :


\tt{ - 5 - 2y = - 7}


\tt{ - 2y = - 7 + 5}


\tt{ - 2y = - 2}


\tt{y = ( - 2)/( - 2)}


\boxed{ \tt{y = 1}}

The possible solution of the system is ordered pair ( x , y ) = ( -5 , 1 ) .


\red{ \boxed{ \boxed { \tt{Our \: final \: answer : \boxed{ \tt{( - 5 \:, 1 \: )}}}}}}

Hope I helped ! ツ

Have a wonderful day / night ! ♡

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

User Jpenninkhof
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories