283,130 views
2 votes
2 votes
A rectangle has an area of a^2 - a - 132. Findthe sides and then find the perimeter

User Frabjous
by
2.7k points

1 Answer

25 votes
25 votes

Answer:

The sides are;


\begin{gathered} l=a-12 \\ b=a+11 \end{gathered}

The perimeter is;


P=4a-2

Step-by-step explanation:

The area of the rectangle is given as;


A=a^2-a-132

recall that area of a rectangle is length multiplied by breadth;


A=l* b

let us factorise the given equation;


\begin{gathered} A=a^2-a-132 \\ A=a^2-12a+11a-132 \\ A=a(a-12)+11(a-12) \\ A=(a-12)(a+11) \end{gathered}

Comparing the factorised equation to the formula for area;


\begin{gathered} A=l* b=(a-12)(a+11) \\ l=a-12 \\ b=a+11 \end{gathered}

The perimeter is given as;


P=2(l+b)

substituting the values of l and b;


\begin{gathered} P=2(a-12+a+11) \\ P=2(2a-1) \\ P=4a-2 \end{gathered}

Therefore; the sides are;


\begin{gathered} l=a-12 \\ b=a+11 \end{gathered}

The perimeter is;


P=4a-2

User OctaveL
by
3.2k points