259,125 views
3 votes
3 votes
3. Find f(g(x)) & g(f(x)),if f(x) = 3x& g(x) = (1/3) xWhat do you notice about f(g(x)) &g(f(x))? What does that tell you about f(x)& g(x)?

User Unicorno Marley
by
2.5k points

1 Answer

9 votes
9 votes

Given:


f(x)=3x,g(x)=(1)/(3)x

Required:

We need to find f(g(x)) and g(f(x)).

Step-by-step explanation:


Substitute\text{ }g(x)=(1)/(3)x\text{ in the }f(g(x)).
f(g(x))=f((1)/(3)x)


Replace\text{ }x=(1)/(3)x\text{ in the equation }f(x)=3x.
f((1)/(3)x)=3((1)/(3)x)
f((1)/(3)x)=x
Substitute\text{ f}((1)/(4)x)=x\text{ in the }f(g(x))=f((1)/(3)x).
f(g(x))=x


Substitute\text{ f}(x)=3x\text{ in the }g(f(x)).
g(f(x))=g(3x)
Replace\text{ }x=3x\text{ in the equation }g(x)=(1)/(3)x.
g(3x)=(1)/(3)(3x)
g(3x)=x
Substitute\text{ }g(3x)=x\text{ in }the\text{ equation }g(f(x))=g(3x).
\text{ }g(f(x))=x
If\text{ }f(g(x))=g(f(x))=x\text{ then f and g are inverse functions.}

Final answer:


f(g(x))=x
f(g(x))=x
\text{f and g are inverse functions.}

User Jose Armesto
by
2.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.