155k views
19 votes
50 points for answer.

Three vertices of parallelogram ABCD are A(2,6), B(2,2) and D(4,4). Find the coordinates of the remaining vertex.

2 Answers

7 votes
Point c: (4,0) hope this helps you
User Bernhard Hofmann
by
5.5k points
5 votes

Answer:

Point C: (4, 0)

Explanation:

Parallelograms are quadrilaterals with two pairs of parallel sides, this means they will have the same slope between two line segments.

point slope form between two points: y - y1 = m (x - x1)

point A (2, 6) and D (4,4):

slope: point form, 6 - 4 = m(2 - 4)

2 = -2m

m (slope) =
\frac {2}{-2} =
\frac {Change in X position}{ Change in Y position}

now that you know the change in position, apply this to vertice B to get the position of the final vertice.

B(2, 2)

C (2 +2, 2-2) = C(4, 0)

The final position of C vertice for parrallelogram A(2,6), B(2,2), D(4,4) will be C(4,0)

User Kranar
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.