Answer:

General Formulas and Concepts:
Pre-Calculus
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2015/formulas/mathematics/high-school/2l408t9ucayob5xkw5dsfcngxuati592ud.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]:

Integration Property [Multiplied Constant]:

U-Substitution
Explanation:
Step 1: Define
Identify

Step 2: Integrate Pt. 1
Set variables for u-substitution.
- Set u:

- [u] Differentiate [Basic Power Rule, Multiplied Constant]:

Step 3: Integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integrand] Rewrite [Trigonometric Identities]:
![\displaystyle \int {sin(3x)sin(6x)} \, dx = (1)/(3) \int {sin(u)[2cos(u)sin(u)]} \, du](https://img.qammunity.org/2015/formulas/mathematics/high-school/i383klq5eyf80i1ehdfvfs2g93i9adru2i.png)
- [Integral] Simplify:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

Step 4: Integrate Pt. 3
Set variables for u-substitution #2.
- Set z:

- [z] Differentiate [Trigonometric Differentiation]:

Step 5: Integrate Pt. 4
- [Integral] U-Substitution:

- [Integral] Reverse Power Rule:

- Simplify:

- [z] Back-Substitute:

- [u] Back-Substitute:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration