199k views
1 vote
How do I evaluate the indefinite integral
∫sin(3x)⋅sin(6x)dxintsin(3x)*sin(6x)dx ?

1 Answer

2 votes

Answer:


\displaystyle \int {sin(3x)sin(6x)} \, dx = (2sin^3(3x))/(9) + C

General Formulas and Concepts:

Pre-Calculus

  • Trigonometric Identities

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {sin(3x)sin(6x)} \, dx

Step 2: Integrate Pt. 1

Set variables for u-substitution.

  1. Set u:
    \displaystyle u = 3x
  2. [u] Differentiate [Basic Power Rule, Multiplied Constant]:
    \displaystyle du = 3 \ dx

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {sin(3x)sin(6x)} \, dx = (1)/(3) \int {3sin(3x)sin(6x)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int {sin(3x)sin(6x)} \, dx = (1)/(3) \int {sin(u)sin(2u)} \, du
  3. [Integrand] Rewrite [Trigonometric Identities]:
    \displaystyle \int {sin(3x)sin(6x)} \, dx = (1)/(3) \int {sin(u)[2cos(u)sin(u)]} \, du
  4. [Integral] Simplify:
    \displaystyle \int {sin(3x)sin(6x)} \, dx = (1)/(3) \int {2sin^2(u)cos(u)} \, du
  5. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {sin(3x)sin(6x)} \, dx = (2)/(3) \int {sin^2(u)cos(u)} \, du

Step 4: Integrate Pt. 3

Set variables for u-substitution #2.

  1. Set z:
    \displaystyle z = sin(u)
  2. [z] Differentiate [Trigonometric Differentiation]:
    \displaystyle dz = -cos(u) \ du

Step 5: Integrate Pt. 4

  1. [Integral] U-Substitution:
    \displaystyle \int {sin(3x)sin(6x)} \, dx = (2)/(3) \int {z^2} \, dz
  2. [Integral] Reverse Power Rule:
    \displaystyle \int {sin(3x)sin(6x)} \, dx = (2)/(3) \Big( (z^3)/(3) \Big) + C
  3. Simplify:
    \displaystyle \int {sin(3x)sin(6x)} \, dx = (2z^3)/(9) + C
  4. [z] Back-Substitute:
    \displaystyle \int {sin(3x)sin(6x)} \, dx = (2sin^3(u))/(9) + C
  5. [u] Back-Substitute:
    \displaystyle \int {sin(3x)sin(6x)} \, dx = (2sin^3(3x))/(9) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Rockchalkwushock
by
7.6k points