341,310 views
9 votes
9 votes
F(x)=1/x-2G(x)= 4/xFind: (fog)(x) =

User DzNET
by
3.1k points

1 Answer

6 votes
6 votes

Given the functions:


\begin{gathered} f(x)=(1)/(x-2) \\ g(x)=(4)/(x) \end{gathered}

We will find the function (gof)(x)

So, we will substitute the function f(x) instead of x into the function g(x)

So,


\begin{gathered} (g\circ f)(x)=(4)/((1)/(x-2)) \\ \\ (g\circ f)(x)=4(x-2) \\ (g\circ f)(x)=4x-8 \end{gathered}

And the function (fog)(x) will be:


\begin{gathered} (f\circ g)(x)=(1)/((4)/(x)-2) \\ \\ (f\circ g)(x)=(x)/(4-2x) \end{gathered}

F(x)=1/x-2G(x)= 4/xFind: (fog)(x) =-example-1
User Fetty
by
2.8k points