97.9k views
1 vote
What two numbers add to 18 and multiply to 82

User Avinash B
by
8.0k points

2 Answers

4 votes

x^2 +18x + 82\\\\ (-b \pm √( b^2 -4( a)(c)) )/(2(a))\\\\ (-18\pm √(18^2 -4(1)(82)) )/(2(1))\\\\ (-18\pm √(-4 ) )/(2) = (-18\pm √(-4*1 ) )/(2) \\\\ = (-18\pm 2i√(1 ) )/(2) \\\\ = (-9\pm 1i√(1 ) )/(1) \\\\ = -9\pm 1i√(1 )\\\\\boxed{\bf{=-9 \pm i}}

The two numbers that add to 18 and multiply to 82 are 9 + i and 9 - i.

(9 + i)(9 - i) = 9^2 - i^2 = 81 - (-1) = 81 + 1 = 82
(9 + i) + (9 - i) = 9 + i + 9 - i = 9 + 9 + i - i = 18
User Noishe
by
7.1k points
2 votes
The answers are complex numbers...

Here's why...

---------

p+q=18

pq=82

---------

Therefore:

p=18-q

p=82/q

------------

Therefore:

18-q=82/q

q(18-q)=q(82/q)

18q-q²=82

(-1)(18q-q²)=82(-1)

q²-18q=-82

(q-9)²-9²=-82

(q-9)²-81=-82

(q-9)²=-82+81

(q-9)²=-1

q-9=-√(-1)=-i

q-9=√(-1)=i

-----------

Therefore:

q=9-i

q=9+i

-------------

ANSWERS:

When q=9-i, p=9+i

When q=9+i, p=9-i

-----------

Proof:

p+(9-i)=18

p+9-i=18

p=18-9+i

p=9+i

....

p+(9+i)=18

p+9+i=18

p=18-9-i

p=9-i

--------------

More proofs:

p=82/(9+i)

p=(82/(9+i))*((9-i)/(9-i))

p=(82(9-i))/(81-9i+9i-i²)

p=(82(9-i))/(81-(-1))

p=(82(9-i))/82

p=9-i

---------------

p=82/(9-i)

p=(82/(9-i))*((9+i)/(9+i))

p=(82(9+i))/(81+9i-9i-i²)

p=(82(9+i))/(81-(-1))

p=(82(9+i))/82

p=9+i
User Roi
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories