193k views
3 votes
How do you find the length of the curve x=3t−t3x=3t-t^3, y=3t2y=3t^2, where 0≤t≤3√0<=t<=sqrt(3) ?

User Tom Holmes
by
8.4k points

1 Answer

6 votes
It's simple, you just have to do this:


L=\int\limits_(a)^(b)\sqrt{\left((dx)/(dt)\right)^2+\left((dy)/(dt)\right)^2}~dt


x=3t-t^3


(dx)/(dt)=3-3t^2


y=3t^2


(dy)/(dt)=6t

replacing


L=\int\limits_(0)^(√(3))√(\left(3-3t^2\right)^2+\left(6t\right)^2)~dt


L=\int\limits_(0)^(√(3))√(9-18t^2+9t^4+36t^2)~dt


L=\int\limits_(0)^(√(3))√(9+9t^4+18t^2)~dt


L=\int\limits_(0)^(√(3))√((3t^2+3)^2)~dt


L=\int\limits_(0)^(√(3))(3t^2+3)~dt


L=t^3+3t|_0^(√(3))


\boxed{\boxed{L=3√(3)+3√(3)=6√(3)}}
User DinhNguyen
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories