122k views
6 votes
Consider a simple pendulum consisting of a massive bob suspended from a fixed point by a string. Let T denote the time (the period of the pendulum) that it takes the bob to complete one cycle of oscillation (the time it takes for the pendulum to swing back and forth one time). How does the period of the swing of the simple pendulum depend on the quantities that define the pendulum and the quantities that determine the motion

User Tapas Pal
by
4.9k points

1 Answer

6 votes

Answer:

The period of the swing depends on only the length of the string and not on the mass of the bob and the period of the pendulum depends on only the horizontal component of g.

Step-by-step explanation:

The period of the swing depends on only the length of the string and not on the mass of the bob. Since the length of the string and the mass of the bob define the pendulum.

Also, the properties that define the motion are the component of the weight of the bob in the horizontal direction which determines the to and fro movement of the bob. So, the period of the pendulum depends on only the horizontal component of g.

So, T = 2π√(l/g) where l = length of pendulum and g = acceleration due to gravity.

User Tuesday
by
4.8k points