197k views
1 vote
Log base 2 of (15b- 15) - log base 2 ( - b^2 + 1 ) = 1

User Hubidubi
by
7.8k points

1 Answer

1 vote

log_(2)(15b - 15) - log_(2)(-b^(2) + 1) = 1

log_(2)((15b - 15)/(-b^(2) + 1)) = 1

log_(2)(\frac{15(b) - 15(1)}{-1({b^(2)) - 1(-1)}}) = 1

log_(2)((15(b - 1))/(-1(b^(2) - 1))) = 1

log_(2)(-(15(b - 1))/(b^(2) - 1)) = 1

log_(2)(-(15(b - 1))/(b^(2) + b - b - 1)) = 1

log_(2)(-(15(b - 1))/(b(b) + b(1) - 1(b) - 1(1))) = 1

log_(2)(-(15(b - 1))/(b(b + 1) - 1(b + 1))) = 1

log_(2)(-(15(b - 1))/((b - 1)(b + 1))) = 1

log_(2)(-(15)/(b + 1)) = 1

2^(1) = -(15)/(b + 1)

2 = -(15)/(b + 1)

2(b + 1) = (b + 1)(-(15)/(b + 1))

2(b) + 2(1) = -15

2b + 2 = -15

2b = 13

(2b)/(2) = (-17)/(2)

b = -8.5

User Naeem Ijaz
by
8.0k points