Answer:
33.5J
Step-by-step explanation:
Given:
Mass of the canister= 3.1 kg
Initial velocity of canister= v(i)= 4.4i m/s
Final velocity of canister= v(f)= 6.4j m/s
Force magnitude( xy plane)= 5 N
The magnitude of vector V'= Vxi + Vyj + Vzk
|V|= √( Vx^2 + Vy^2 + Vz^2
From Kinectic energy and work theorem.
Net work = Kinectic energy of the canister
ΔK= W
(Kf - Ki)= W
Where Kf= final Kinectic energy
= 1/2 mv^2
If we input the given values we have,
= 1/2 × 3.1 ×√(4.4^2 + 0^2 + 0^2)^2 = 30J
Ki= initial Kinectic energy
= 1/2 mv^2
If we substitute the given values we have
=1/2 × 3.1 ×√(0^2 + 6.4^2 + 0^2)^2 = 63.5 J
Work done by canister = (final Kinectic energy - initial energy)
= 63.5- 30
=33.5J
Hence, work done on the canister 33.5J