457,601 views
4 votes
4 votes
Solve the trianglea= 1200 in , b= 859 in, c= 956 in

Solve the trianglea= 1200 in , b= 859 in, c= 956 in-example-1
User Lincecum
by
2.5k points

1 Answer

12 votes
12 votes

Given:

Sides of triangle a = 1200, b =859, c = 956.

Required:

Angles of a triangle.

Step-by-step explanation:

We know that


\begin{gathered} CosA=(b^2+c^2-a^2)/(2bc) \\ CosB=(a^2+c^2-b^2)/(2ac) \\ CosC=(a^2+b^2-c^2)/(2ab) \end{gathered}

Now,


\begin{gathered} CosA=(859^2+956^2-1200^2)/(2*859*956) \\ CosA=(737881+913936-1440000)/(1642408) \\ A=Cos^(-1)(0.13) \end{gathered}

And


\begin{gathered} CosB=(1200^2+956^2-859^2)/(2*1200*956) \\ CosB=(1440000+913936-737881)/(2294400) \\ A=Cos^(-1)(0.14) \end{gathered}

And


\begin{gathered} CosC=(1440000+737881-913936)/(2*1200*859) \\ C=Cos^(-1)(0.61) \end{gathered}

Answer:T

These are three angles of triangle.

User Maressyl
by
3.2k points