193k views
1 vote
What is the solution to x2 + 10x + 28 = 0 when written in the form a ± bi?

2 Answers

2 votes

x^2+10x+28=0\\\\a=1;\ b=10;\ c=28\\\\\Delta=b^2-4ac\\\\\Delta=10^2-4\cdot1\cdot28=100-112=-112\\\\x_1=(-b-\sqrt\Delta)/(2a);\ x_2=(-b+\sqrt\Delta)/(2a)\\\\\sqrt\Delta=√(-12)=i√(12)=i√(4\cdot3)=i\sqrt4\cdot\sqrt3=2i\sqrt3


x_1=(-10-2i\sqrt3)/(2\cdot1)=-5-i\sqrt3\\\\x_2=(-10+2i\sqrt3)/(2\cdot1)=-5+i\sqrt3
User Walknotes
by
8.3k points
3 votes
use the quadratic formular:
x=[-10+√(10²-4*1*28)]/2*1 or x=[-10-√(10²-4*1*28)]/2*1
x=[-10+√(-12)]/2 or x=[-10-√(-12)]/2
x=-5+√3i or x=-5-√3i
User DeChristo
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories