91,778 views
28 votes
28 votes
Hello, can you please help me solve question six !

Hello, can you please help me solve question six !-example-1
User Joey Gao
by
2.8k points

1 Answer

14 votes
14 votes

QUESTION A

The equation is given to be:


\cos x-\sec x=1

Step 1: Apply the identity:


\sec x=(1)/(\cos x)

Therefore, we have:


\cos x-(1)/(\cos x)=1

Step 2: Multiply all through by cos x:


(\cos x)^2-1=\cos x

Step 3: Rewrite the equation


(\cos x)^2-\cos x-1=0

Step 4: Make the substitution for cos x = m


\begin{gathered} \therefore \\ m^2-m-1=0 \end{gathered}

Step 5: Solve the quadratic equation using the quadratic formula


\begin{gathered} m=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ a=1,b=-1,c=-1 \\ m=\frac{-(-1)\pm\sqrt[]{(-1)^2-4*1*(-1)}}{2*1} \\ m=\frac{1\pm\sqrt[]{1+4}}{2} \\ m=\frac{1\pm\sqrt[]{5}}{2} \\ \therefore \\ m=\frac{1+\sqrt[]{5}}{2},\frac{1-\sqrt[]{5}}{2} \end{gathered}

Step 6: Substitute for m back into the solution of the quadratic equation


\begin{gathered} \cos x=\frac{1+\sqrt[]{5}}{2} \\ or \\ \cos x=\frac{1-\sqrt[]{5}}{2} \end{gathered}

Step 7: Solve for x by finding the cosine inverse of the solutions


x=\cos ^(-1)(\frac{1+\sqrt[]{5}}{2})=\text{ undefined}

or


x=\cos ^(-1)(\frac{1-\sqrt[]{5}}{2})=128.17

The value of x is 128.17.

QUESTION B

The equation is:


\cos x+\sec x=1

Step 1: Rewrite the equation


\cos x+(1)/(\cos x)=1

Step 2: Multiply all through by cos x


(\cos x)^2+1=\cos x

Step 3: Rearrange the equation terms


(\cos x)^2-\cos x+1=0

Step 4: Make the substitution for cos x = m


m^2-m+1=0

Step 5: Solve the quadratic equation


m=\frac{1+i\sqrt[]{3}}{2},\frac{1-i\sqrt[]{3}}{2}

Step 6: Substitute for m back into the solution of the quadratic equation


\begin{gathered} \cos x=\frac{1+i\sqrt[]{3}}{2} \\ or \\ \cos x=\frac{1-i\sqrt[]{3}}{2} \end{gathered}

Step 7: Solve for x by finding the cosine inverse of the solutions


\begin{gathered} x=\cos ^(-1)(\frac{1+i\sqrt[]{3}}{2})=\text{ undefined} \\ or \\ c=\cos ^(-1)(\frac{1-i\sqrt[]{3}}{2})=\text{ undefined} \end{gathered}

There is no solution for x.

User Alexey Nazarov
by
3.1k points