105k views
1 vote
Instructions:Select the correct answer from each drop-down menu.

The equation of the graphed line in slope-point form using the point (2, -1) is ________

a)
y+1=4x-8
b)
y+1= (1)/(4)(x-2)

and its equation in slope-intercept form is _________

a)
y= (x)/(4)- (3)/(2)
b)
4y=x-6

Instructions:Select the correct answer from each drop-down menu. The equation of the-example-1

2 Answers

5 votes
The equation of the graphed line in slope-point form using the point (2, -1) is
b)
y+1= (1)/(4)(x-2)

and its equation in slope-intercept form is _________
a)
y= (x)/(4)- (3)/(2)
User Blakkwater
by
7.5k points
4 votes

Answer:

(1)
y+1=(1)/(4)(x-2)

(2)
y=(x)/(4)-(3)/(2)

Explanation:

From the given graph it is clear that the line passes through two point (-2,-2) and (2,-1). So, the slope of the line is


Slope=(y_2-y_1)/(x_2-x_1)


Slope=(-1-(-2))/(2-(-2))


Slope=(1)/(4)

Slope of the given line is 1/4.

Point slope form of a line is


y-y_1=m(x-x_1)

where, m is the slope.

The slope of the line is 1/4 and it passes through the point (2,-1), So, the point slope form of the given line is


y-(-1)=(1)/(4)(x-2)


y+1=(1)/(4)(x-2)

The point slope form of the given line is
y+1=(1)/(4)(x-2).

The point slope form of a line is


y=mx+b

where, m is slope and b is y-intercept.

Simplify the above equation to find the slope intercept form of given line is


y+1=(1)/(4)(x)+(1)/(4)(-2)


y+1=(x)/(4)-(1)/(2)

Subtract 1 from both sides.


y+1-1=(x)/(4)-(1)/(2)-1


y=(x)/(4)-(3)/(2)

Therefore, the slope intercept form of the given line is
y=(x)/(4)-(3)/(2).

User SamClem
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories