8.9k views
5 votes
Part b if you have time please

Part b if you have time please-example-1

1 Answer

6 votes

\bf cos({{ \alpha}} + {{ \beta}})= cos({{ \alpha}})cos({{ \beta}})- sin({{ \alpha}})sin({{ \beta}}) \\\\\\ \textit{also recall that }\qquad sin^2(\theta)+cos^2(\theta)=1\\\\ -------------------------------\\\\ \begin{cases} x=4cos\left( t+(\pi )/(6) \right)&\impliedby \textit{let's solve for cos(t)} \\\\ y=2sin(t)&\impliedby \textit{let's solve for sin(t)} \end{cases}\\\\ -------------------------------\\\\ y=2sin(t)\implies \cfrac{y}{2}=sin(t)\\\\ -------------------------------\\\\


\bf x=4cos\left( t+(\pi )/(6) \right)\implies \cfrac{x}{4}=cos\left( t+(\pi )/(6) \right) \\\\\\ \cfrac{x}{4}=cos(t)cos\left((\pi )/(6) \right)-sin(t)sin\left((\pi )/(6) \right)\implies \cfrac{x}{4}=cos(t)\cdot \cfrac{√(3)}{2}~-~sin(t)\cdot \cfrac{1}{2} \\\\\\ \cfrac{x}{4}=\cfrac{cos(t)√(3)~-~sin(t)}{2}\implies \cfrac{x}{2}=cos(t)√(3)~-~sin(t) \\\\\\ \cfrac{x}{2}+sin(t)=cos(t)√(3)\implies \cfrac{(x)/(2)+sin(t)}{√(3)}=cos(t)


\bf \cfrac{(x)/(2)+\stackrel{\downarrow }{(y)/(2)}}{√(3)}=cos(t)\\\\ -------------------------------\\\\ \stackrel{cos^2(\theta )}{\left( \cfrac{(x)/(2)+(y)/(2)}{√(3)} \right)^2}+\stackrel{sin^2(\theta )}{\left( \cfrac{y}{2} \right)^2} ~~=~~ 1 \\\\\\ \left( \cfrac{(x+y)/(2)}{√(3)} \right)^2+\left( \cfrac{y}{2} \right)^2=1\implies \left( \cfrac{x+y}{2√(3)} \right)^2+\left( \cfrac{y}{2} \right)^2=1


\bf \cfrac{(x+y)^2}{(2√(3))^2}+\cfrac{y^2}{2^2}=1\implies \cfrac{(x+y)^2}{2^2(3)}+\cfrac{y^2}{4}=1\implies \cfrac{(x+y)^2}{12}+\cfrac{y^2}{4}=1 \\\\\\ \textit{now we'll multiply both sides by 12, to do away with the denominators} \\\\\\ (x+y)^2+\stackrel{a}{3}y^2=\stackrel{b}{12}
User MandyW
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories