77.9k views
4 votes
According to the formula, if the end of year deposit is $1,777.31, the annual interest rate is 5%, and the term is 18 years, find A.

A. $41,088.42 B. $50,000.00 C. $50,968.22 D. $53,920.75

User Pezetter
by
8.5k points

1 Answer

5 votes

\bf ~~~~~~~~~~~~\textit{Future Value of an ordinary annuity}\\ \left. \qquad \qquad \right.(\textit{payments at the end of the period}) \\\\ A=pymnt\left[ \cfrac{\left( 1+(r)/(n) \right)^(nt)-1}{(r)/(n)} \right]


\bf ~~~~~~ \begin{cases} A= \begin{array}{llll} \textit{accumulated amount}\\ \end{array}\to & \begin{array}{llll} \end{array}\\ pymnt=\textit{periodic payments}\to &1777.31\\ r=rate\to 5\%\to (5)/(100)\to &0.05\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{is done on a yearly basis} \end{array}\to &1\\ t=years\to &18 \end{cases}


\bf A=1777.31\left[ \cfrac{\left( 1+(0.05)/(1) \right)^(1\cdot 18)-1}{(0.05)/(1)} \right]\implies A=1777.31\left( \cfrac{1.05^(18)}{0.05} \right)
User Chad Podoski
by
8.8k points