434,217 views
32 votes
32 votes
Using the law of sines, determine whether the given information results in one triangle, two triangles or no triangle at all. Solve any triangle (s) that results. See picture for details

Using the law of sines, determine whether the given information results in one triangle-example-1
User Elishia
by
3.2k points

1 Answer

12 votes
12 votes


\begin{gathered} b=8.89 \\ c=10.18 \\ \angle C=74\text{ \degree} \end{gathered}Step-by-step explanation

the law of sines states that


\frac{\sin\text{ A}}{a}=(\sin B)/(b)=(\sin C)/(c)

hence

Step 1

a)let


\begin{gathered} a=8 \\ \angle B=57\text{ \degree} \\ \angle A=\angle49\text{ \degree} \end{gathered}

b) replace to find B


\begin{gathered} \frac{\sin\text{ A}}{a}=(\sin B)/(b)=(\sin C)/(c) \\ (\sin49)/(8)=(\sin(57))/(b) \\ b*sin49=8sin57 \\ b=\frac{8sin\text{ 57}}{sin\text{ 49}} \\ b=8.89 \end{gathered}

c) we can find the angle C usign the fact that the sum of the internal angles in a triangle equals 180,so


\begin{gathered} \angle A+\angle B+\angle C=180 \\ replace\text{ and solve for }\angle \\ 49+57+\angle C=180 \\ \angle C=180-49-57 \\ \angle C=74 \end{gathered}

c) finally, side c


\begin{gathered} \frac{\sin\text{ A}}{a}=(\sin B)/(b)=(\sin C)/(c) \\ \frac{\sin(\text{A})}{a}=(\sin(C))/(c) \\ c*sin(A)=asin(C) \\ c=\frac{asin\text{ \lparen C\rparen}}{sin\text{ \lparen A\rparen}} \\ replace \\ c=(8sin(74))/(sin(49)) \\ c=10.18 \end{gathered}

so, the answer is ( one triangle)


\begin{gathered} b=8.89 \\ c=10.18 \\ \angle C=74\text{ \degree} \end{gathered}

I hope this helps you

Using the law of sines, determine whether the given information results in one triangle-example-1
User Sunil Buddala
by
2.9k points