106k views
5 votes
Find all solutions to the equation in the interval [0, 2π).

cos 2x - cos x = 0

A.
0, (2 \pi )/(3) , (4 \pi )/(3)

B.
( \pi )/(6) , (5 \pi )/(6) , (3 \pi )/(2)

C.
0, ( \pi )/(2), (7 \pi )/(6), (11 \pi )/(6)

D. No solution

1 Answer

1 vote

\bf cos(2\theta)= \begin{cases} cos^2(\theta)-sin^2(\theta)\\ 1-2sin^2(\theta)\\ \boxed{2cos^2(\theta)-1} \end{cases}\\\\ -------------------------------\\\\ cos(2x)-cos(x)=0\implies \boxed{2cos^2(x)-1}-cos(x)=0 \\\\\\ \stackrel{\textit{notice is just a quadratic}}{2cos^2(x)-cos(x)-1=0}\implies [2cos(x)+1][cos(x)-1]=0\\\\ -------------------------------


\bf 2cos(x)+1=0\implies 2cos(x)=-1 \\\\\\ cos(x)=-\cfrac{1}{2}\implies \measuredangle x= \begin{cases} (2\pi )/(3)\\\\ (4\pi )/(3) \end{cases}\\\\ -------------------------------\\\\ cos(x)-1=0\implies cos(x)=1\implies \measuredangle x=0

notice that the angle at 2π also has a cosine of 1, however is out of [0, 2π).
User Mateech
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories