77.0k views
0 votes
What is the similarity ratio of a prism with surface area 36 ft2 to a similar prism with surface area 225 ft2?

2 Answers

5 votes

Answer: 6:15___{2:5}

The reduce it by dividing by 3.

6/3 =2.

15/3 =5.

= {2:5}

User Aiolias
by
8.9k points
2 votes


\bf \qquad \qquad \textit{ratio relations}</p><p>\\\\</p><p>\begin{array}{ccccllll}</p><p>&amp;\stackrel{ratio~of~the}{Sides}&amp;\stackrel{ratio~of~the}{Areas}&amp;\stackrel{ratio~of~the}{Volumes}\\</p><p>&amp;-----&amp;-----&amp;-----\\</p><p>\cfrac{\textit{similar shape}}{\textit{similar shape}}&amp;\cfrac{s}{s}&amp;\cfrac{s^2}{s^2}&amp;\cfrac{s^3}{s^3}</p><p>\end{array} \\\\</p><p>-----------------------------\\\\


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------


\bf \stackrel{sides}{\cfrac{s^2}{s^2}}=\stackrel{areas}{\cfrac{36}{225}}\implies \left( \cfrac{s}{s} \right)^2=\cfrac{36}{225}\implies \cfrac{s}{s}=\sqrt{\cfrac{36}{225}} \implies \cfrac{s}{s}=\cfrac{√(36)}{√(225)} \\\\\\ \cfrac{s}{s}=\cfrac{6}{15}\implies \cfrac{s}{s}=\cfrac{2}{5}\qquad \qquad \stackrel{\textit{similarity ratio}}{s~:~s\implies 2~:~5}

User Anton VBR
by
7.6k points