77.0k views
0 votes
What is the similarity ratio of a prism with surface area 36 ft2 to a similar prism with surface area 225 ft2?

2 Answers

5 votes

Answer: 6:15___{2:5}

The reduce it by dividing by 3.

6/3 =2.

15/3 =5.

= {2:5}

User Aiolias
by
8.9k points
2 votes


\bf \qquad \qquad \textit{ratio relations}</p><p>\\\\</p><p>\begin{array}{ccccllll}</p><p>&amp;\stackrel{ratio~of~the}{Sides}&amp;\stackrel{ratio~of~the}{Areas}&amp;\stackrel{ratio~of~the}{Volumes}\\</p><p>&amp;-----&amp;-----&amp;-----\\</p><p>\cfrac{\textit{similar shape}}{\textit{similar shape}}&amp;\cfrac{s}{s}&amp;\cfrac{s^2}{s^2}&amp;\cfrac{s^3}{s^3}</p><p>\end{array} \\\\</p><p>-----------------------------\\\\


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------


\bf \stackrel{sides}{\cfrac{s^2}{s^2}}=\stackrel{areas}{\cfrac{36}{225}}\implies \left( \cfrac{s}{s} \right)^2=\cfrac{36}{225}\implies \cfrac{s}{s}=\sqrt{\cfrac{36}{225}} \implies \cfrac{s}{s}=\cfrac{√(36)}{√(225)} \\\\\\ \cfrac{s}{s}=\cfrac{6}{15}\implies \cfrac{s}{s}=\cfrac{2}{5}\qquad \qquad \stackrel{\textit{similarity ratio}}{s~:~s\implies 2~:~5}

User Anton VBR
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories