17.3k views
4 votes
Find the indefinite integral. (use c for the constant of integration.) sin xcos5 x dx

User Tianyu
by
8.6k points

1 Answer

2 votes

Answer:


\displaystyle \int {sin(x)cos(5x)} \, dx = (cos(4x))/(8) - (cos(6x))/(12) + C

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Expanding/Factoring

Pre-Calculus

Trigonometric Identities

  • Product-to-Sum Formula:
    \displaystyle sin(x)cos(y) = (sin(y + x) - sin(y - x))/(2)

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {sin(x)cos(5x)} \, dx

Step 2: Integrate Pt. 1

  1. [Integrand] Rewrite [Product-to-Sum Formula]:
    \displaystyle \int {sin(x)cos(5x)} \, dx = \int {(sin(6x) - sin(4x))/(6)} \, dx
  2. [Integrand] Rewrite:
    \displaystyle \int {sin(x)cos(5x)} \, dx = \int {\Big( (sin(6x))/(2) - (sin(4x))/(2) \Big)} \, dx
  3. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int {sin(x)cos(5x)} \, dx = \int {(sin(6x))/(2)} \, dx - \int {(sin(4x))/(2)} \, dx
  4. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {sin(x)cos(5x)} \, dx = (1)/(2)\int {sin(6x)} \, dx - (1)/(2)\int {sin(4x)} \, dx
  5. Factor:
    \displaystyle \int {sin(x)cos(5x)} \, dx = (1)/(2) \bigg[ \int {sin(6x)} \, dx - \int {sin(4x)} \, dx \bigg]

Step 3: integrate Pt. 2

Identify variables for u-substitution.

Integral 1:

  1. Set u:
    \displaystyle u = 6x
  2. [u] Differentiate [Basic Power Rule, Multiplied Constant]:
    \displaystyle du = 6 \ dx

Integral 2:

  1. Set z:
    \displaystyle z = 4x
  2. [z] Differentiate [Basic Power Rule, Multiplied Constant]:
    \displaystyle dz = 4 \ dx

Step 4: Integrate Pt. 3

  1. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {sin(x)cos(5x)} \, dx = (1)/(2) \bigg[ (1)/(6)\int {6sin(6x)} \, dx - (1)/(4)\int {4sin(4x)} \, dx \bigg]
  2. [Integrals] U-Substitution:
    \displaystyle \int {sin(x)cos(5x)} \, dx = (1)/(2) \bigg[ (1)/(6)\int {sin(u)} \, du - (1)/(4)\int {sin(z)} \, dz \bigg]
  3. [Integrals] Trigonometric Integration:
    \displaystyle \int {sin(x)cos(5x)} \, dx = (1)/(2) \bigg[ (1)/(6)[-cos(u)] - (1)/(4)[-cos(z)] \bigg] + C
  4. Simplify:
    \displaystyle \int {sin(x)cos(5x)} \, dx = (1)/(2) \bigg[ (cos(z))/(4) - (cos(u))/(6) \bigg] + C
  5. Expand:
    \displaystyle \int {sin(x)cos(5x)} \, dx = (cos(z))/(8) - (cos(u))/(12) + C
  6. Back-Substitute:
    \displaystyle \int {sin(x)cos(5x)} \, dx = (cos(4x))/(8) - (cos(6x))/(12) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Aaric Chen
by
8.0k points