180k views
2 votes
Find the indefinite integral. (remember to use absolute values where appropriate. use c for the constant of integration.) x2 − 22x dx

User Sharondio
by
7.6k points

1 Answer

3 votes

Answer:


\displaystyle \int {(x^2 - 22x)} \, dx = (x^3)/(3) - 11x^2 + C

General Formulas and Concepts:

Calculus

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle \int {(x^2 - 22x)} \, dx

Step 2: Integrate

  1. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int {(x^2 - 22x)} \, dx = \int {x^2} \, dx - \int {22x} \, dx
  2. [2nd Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(x^2 - 22x)} \, dx = \int {x^2} \, dx - 22\int {x} \, dx
  3. [Integrals] Reverse Power Rule:
    \displaystyle \int {(x^2 - 22x)} \, dx = (x^3)/(3) - 22 \Big( (x^2)/(2) \Big) + C
  4. Simplify:
    \displaystyle \int {(x^2 - 22x)} \, dx = (x^3)/(3) - 11x^2 + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Suhail Doshi
by
7.1k points