35.6k views
0 votes
How do you prove cosx = 1-tan^2(x/2)/1+tan^2(x/2)?

1 Answer

2 votes

\bf tan\left(\cfrac{{{ \theta}}}{2}\right)= \begin{cases} \pm \sqrt{\cfrac{1-cos({{ \theta}})}{1+cos({{ \theta}})}} \\ \quad \\ \boxed{\cfrac{sin({{ \theta}})}{1+cos({{ \theta}})}} \\ \quad \\ \cfrac{1-cos({{ \theta}})}{sin({{ \theta}})} \end{cases}\\\\ -------------------------------\\\\ tan^2\left( (x)/(2) \right)\implies \left[ \cfrac{sin(x)}{1+cos(x)} \right]^2\implies \cfrac{sin^2(x)}{[1+cos(x)]^2} \\\\\\ \boxed{\cfrac{sin^2(x)}{1+2cos(x)+cos^2(x)}}

now, let's plug that in the right-hand-side expression,


\bf cos(x)=\cfrac{1-tan^2\left( (x)/(2) \right)}{1+tan^2\left( (x)/(2) \right)}\\\\ -------------------------------\\\\ \cfrac{1-tan^2\left( (x)/(2) \right)}{1+tan^2\left( (x)/(2) \right)}\implies \cfrac{1-(sin^2(x))/(1+2cos(x)+cos^2(x))}{1+(sin^2(x))/(1+2cos(x)+cos^2(x))} \\\\\\ \cfrac{(1+2cos(x)+cos^2(x)~-~sin^2(x))/(1+2cos(x)+cos^2(x))}{(1+2cos(x)+cos^2(x)~+~sin^2(x))/(1+2cos(x)+cos^2(x))}


\bf \cfrac{1+2cos(x)+cos^2(x)~-~sin^2(x)}{\underline{1+2cos(x)+cos^2(x)}}\cdot \cfrac{\underline{1+2cos(x)+cos^2(x)}}{1+2cos(x)+cos^2(x)~+~sin^2(x)} \\\\\\ \cfrac{1+2cos(x)+cos^2(x)~-~sin^2(x)}{1+2cos(x)+cos^2(x)~+~sin^2(x)}


\bf -------------------------------\\\\ recall\qquad sin^2(\theta)+cos^2(\theta)=1\\\\ -------------------------------\\\\ \cfrac{\boxed{sin^2(x)+cos^2(x)}+2cos(x)+cos^2(x)~-~sin^2(x)}{1+2cos(x)+\boxed{1}} \\\\\\ \cfrac{cos^2(x)+2cos(x)+cos^2(x)}{2+2cos(x)}\implies \cfrac{2cos(x)+2cos^2(x)}{2+2cos(x)} \\\\\\ \cfrac{\underline{2} cos(x)~\underline{[1+cos(x)]}}{\underline{2}~\underline{[1+cos(x)]}}\implies cos(x)
User Jangorecki
by
7.9k points

No related questions found