171k views
4 votes
Given: ΔABC, CM ⊥ AB AC = 10, CM = 4 AM:BM = 2:5 Find: AB, CB

1 Answer

3 votes

Answer:


AB = 7√(21)\\CB= √(541)

Explanation:

Given: Δ ABC, CM⊥ AB


AC = 10, CM = 4 AM:BM = 2:5

Now, consider
AM:BM = 2:5 = 2x:5x

Let In ΔCMA H=- 10 , P= 4 , B= 2x

By, Pythagoras theorem,
H^2=P^2+B^2

putting values we get,
10^2=4^2+(2x)^2


100=16+4x^2


x^2= 21


x= √(21)

which gives us
AM = 2x= 2√(21) and
MB = 5x= 5√(21)


AB= 2√(21)+5√(21)


AB= 7√(21)

Now, Let In ΔCMB H=- ? , P= 4 , B= 5√21

By, Pythagoras theorem,
H^2=P^2+B^2

putting values we get,
H^2=4^2+(5√(21))^2


H^2=16+525


H^2=541


H= √(541)


CB= √(541)

Therefore,
AB = 7√(21)\\CB= √(541)

User Jaxkr
by
7.3k points