82.2k views
3 votes
Simplify the given expression and assume that no variable equals zero. And show your work, please.

Simplify the given expression and assume that no variable equals zero. And show your-example-1
User LvN
by
8.2k points

1 Answer

2 votes

\bf \left.\qquad \qquad \right.\textit{negative exponents}\\\\ a^{-{ n}} \implies \cfrac{1}{a^( n)} \qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}} \qquad \qquad a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}}\\\\ -------------------------------\\\\ \left( \cfrac{32x^(18)y^(10)}{16x^9y^(20)} \right)^2\impliedby \textit{first off, let's distribute the exponent} \\\\\\


\bf \left( \cfrac{32^2x^(2\cdot 18)y^(2\cdot 10)}{16^2x^(2\cdot 9)y^(2\cdot 20)} \right)\implies \cfrac{32^2x^(36)y^(20)}{16^2x^(18)y^(40)}\implies \cfrac{32^2x^(36)x^(-18)}{16^2y^(-20)y^(40)} \\\\\\


\bf \cfrac{32^2x^(36-18)}{16^2y^(-20+40)} \implies \cfrac{32^2x^(18)}{16^2y^(20)}\implies \cfrac{32\cdot 32}{16\cdot 16}\cdot \cfrac{x^(18)}{y^(20)}\implies \cfrac{32}{16}\cdot \cfrac{32}{16}\cdot \cfrac{x^(18)}{y^(20)} \\\\\\ \cfrac{2}{1}\cdot \cfrac{2}{1}\cdot \cfrac{x^(18)}{y^(20)}\implies \cfrac{4x^(18)}{y^(20)}
User Timothy Vogel
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.